Goose Surface Temperature Monitoring System Based on Deep Learning Using Visible and Infrared Thermal Image Integration
نویسندگان
چکیده
Owing to increased biosecurity and industrial demands, the poultry houses in Taiwan are generally nonopen closed types, with automatic environmental control sensor equipment gradually being installed such houses. Environmental sensors health monitoring systems necessary improve feeding efficiency safety. In this work, we developed a goose surface temperature system based on deep learning using visible image integrated infrared thermal image. This could detect geese obtain individual automatically. consisted of an embedded trained detection model, camera, camera. The Mask R-convolutional neural network algorithm was employed train model by collected images. camera captured images house, which be identified model. temperatures were obtained through integration land pool areas commercial house monitor achieved precision 97.1% recall 95.1%. addition, area observed lower than that area. would used as management index managers.
منابع مشابه
Monitoring the earth surface temperature and relationship land use with surface temperature using of OLI and TIRS Image
Earth surface temperature is an important indicator in the study of energy equilibrium models at the ground level on a regional and global scale. Due to the limitation of meteorological stations, remote sensing can be an appropriate alternative to the Earth's surface temperature. The main objective of this study is to monitor the surface temperature and its relationship with land use, which is ...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3113509